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CHAOS IN TWO-PARTY DEMOCRACIES
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In two-party democracies (e.g. US and UK) the two parties often alternate at the government
almost periodically. Here, we present a very simple continuous-time model with three state
variables (social welfare and size of the lobbies associated with the two parties) that explains
this tendency to cyclic behavior. However, the analysis of the model shows that when the lobbies
are unbalanced, much more complex behaviors, including chaos, can emerge. The bifurcation
structure of the system is interesting: it contains a countable number of codimension-2 points
(associated with pseudo-equilibria of a particular Filippov system) which are the roots of Arnold
tongues delimited by two border collision bifurcations, and in each one of these tongues the
sequence of the parties at the government is a particular periodic sequence.
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1. Introduction

In multi-party democracies a party can remain at
the government (alone or in coalition) for a very
long time. For example, in Italy where there have
always been more than ten parties, the Christian
Democracy remained uninterruptedly at the gov-
ernment for 44 years, starting in 1948. By contrast,
in two-party democracies like the United Kingdom
or the United States, the leading party is often not
reelected. For example in the US, democrats (D)
and republicans (R) have been alternating at the
government since 1945 with President Harry S. Tru-
man (D) in the following way

DDRRDDRRDRRRDDRR

The sequence is not periodic but there is a fre-
quently recurrent pattern, namely DDRR, i.e. each
president remains in charge for two terms. This ten-
dency to cycle can only be attributed to endogenous

mechanisms, while exogenous random factors like
trends in the economy, wars, scandals and appeal
of the candidates might at most explain deviations
from regular behaviors.

Here, we propose a very simple model that
mimics in a rather näıve way the dynamics of the
lobbies associated with the parties and the crite-
rion that people follow when they vote once every
T years. The analysis of the model shows that when
the lobbies have comparable characteristics, the two
parties alternate regularly at the government and
the welfare varies periodically. But this is not so
when there are relevant differences in the lobbies.
In particular, the model shows that even in the
absence of external factors, welfare can vary chaoti-
cally and the result of the elections can follow rather
complex patterns. These patterns can be explained
through bifurcation analysis, by computing Arnold
tongues associated to particular pseudo-equilibria
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of the Filippov system describing the limit case of
extremely frequent elections. Moreover, the analysis
shows that the mean welfare decreases with respect
to T and is, in any case, higher than the welfare
that each party could guarantee by remaining per-
manently at the government. This gives a theoreti-
cal support to the idea that two-party democracies
are more efficient than multi-party democracies.

Even if the results obtained with our model are
sensible and in line with historical observations and
beliefs, we like to stress that the model is extremely
simplified with respect to reality. Thus, this study
should essentially be considered as a provocative
intellectual exercise, but can however be a good
starting point for further refinements.

2. The Model

The model we propose mimics in a very simpli-
fied way the mechanisms present in a real world
two-party democracy. Our basic assumption is that
there exists a lobby associated to each party, and
the individuals belonging to the lobby of the party
at the government erode the welfare that the gov-
ernment is able to generate, at a rate proportional
to the size of the lobby. The size of a lobby can
increase only as long as its party is at the govern-
ment, and decays otherwise since there is always a
small fraction of the individuals who abandon their
activity. Finally, a small fraction of the individuals
belonging to the lobby of the party that is not at
the government defect and switch to the other lobby
(the turncoats). Once every T years there are elec-
tions and people vote for the party that has the less
damaging lobby at the time of the elections. This
last assumption, which might look very crude at a
first glance, actually explains why in pre-electoral
period each party tries to convince the people that
the other party is potentially very damaging.

Altogether, the dynamics of the model are cap-
tured by three state variables, namely the social
welfare (W ) and the size of the lobbies (LD and
LR). In the following we indicate the state of the
system by x, i.e.

x =




W

LD

LR




so that the dynamics of the system will be described
by two sets of ODE, namely

ẋ = f (i)(x) (1)

where i ∈ {D,R} indicates the party at the govern-
ment. The social welfare W can vary between 0 and
1, where 1 is the highest possible level of welfare,
and the sizes of the lobbies are assumed to be reals.
The two vector fields f (i) are:

f (D)(W,LD, LR) =




r(1 − W − aDLD)W,

(eDaDW − dD)LD + kRLR,

(−dR − kR)LR,

f (R)(W,LD, LR) =




r(1 − W − aRLr)W,

(−dD − kD)LD,

(eRaRW − dR)LR + kDLD.

Here, r is the intrinsic growth rate of the wel-
fare, which specifies the speed at which the welfare
increases in the ideal case of no lobbies; a repre-
sents the aggressiveness of a lobby, namely the rate
at which the social welfare decreases per unit size
of the lobby; e is the recruitment coefficient of a
lobby, that is, the proportionality factor between
the flow of eroded welfare and the flow of new indi-
viduals entering the lobby; d and k are respectively
the rate at which individuals abandon the lobbies
or defect. In the region SD (SR) of the state space
where aDLD < aRLR (aDLD > aRLR) the D-lobby
(R-lobby) is less damaging, therefore people will
vote for the D-party (R-party) if the state x of the
system is in SD (SR) at the time of the elections.

In principle, the time T between elections
should be a small natural number (for example four
years for the US). Nonetheless, the cases T → ∞
and T = 0 deserve some attention, because they
help understand the properties of the model.

The case T = ∞ corresponds to putting one
party at the government and leaving it there forever.
One can prove that under these conditions there are
no limit cycles (or more complex attractors) and
only one stable equilibrium, namely

xD =




dD

eDaD

eDaD − dD

eDa2
D

0




, xR =




dR

eRaR

0

eRaR − dR

eRa2
R




if eiai > di, and

xD = xR =



1
0
0


 ,

otherwise.
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Notice that, if eiai > di for both parties, then
xD ∈ SR and xR ∈ SD. Therefore, if T is large but
finite, the system can only oscillate roughly between
xD and xR, remaining for a long time close to these
points but never reaching them. In other words, the
state of the system must tend to a limit cycle or to
a more complex attractor. In this case, the mean
value of the welfare W T must tend for T → ∞ to
the mean between the values W D and W R that the
two parties would obtain if they remained at the
government forever, i.e. W ∞ = (1/2)(W D +W R).

In the case T = 0 elections are held contin-
uously. This has obviously no physical meaning,
and too frequent elections would introduce nega-
tive effects that are not considered in the model.
However, from a purely mathematical point of view,
the model becomes a Filippov system [Filippov,
1964, 1988], where the state space is divided in two
regions (SD and SR) by the discontinuity boundary
aDLD = aRLR. Trajectories evolve in accordance
with the vector field f (D) in region SD, and f (R)

in region SR. All trajectories eventually reach the
discontinuity boundary and slide on it from there
on. The evolution of the state on the discontinu-
ity boundary can be interpreted as a sequence of
infinitely short segments of trajectory obeying the
vector fields f (D) or f (R) or, equivalently, it can be
viewed as a smooth trajectory obeying the so-called
Filippov sliding vector field:

f (S) = λf (D) + (1 − λ)f (R), (2)

where λ is between 0 and 1 and depends on the
system state in such a way that the sliding vector
field remains tangent to the discontinuity boundary.
Moreover, one can prove that the system restricted
to the discontinuity boundary has a stable equilib-
rium x∗ (called pseudo-equilibrium) and no other
attractor. The pseudo-equilibrium x∗ is character-
ized by f (S) = 0, i.e. by

λf (D) + (1 − λ)f (R) = 0,

and trivial but cumbersome computations show
that the mean value of the welfare at the pseudo-
equilibrium is well approximated by (W D + W R)
if kD and kR are small. This means that if the
turncoats are not too many, then W 0 = 2W ∞, i.e.
the average welfare is higher when the elections are
extremely frequent than when they are very seldom.

3. Model Behavior

In order to facilitate readers who are not familiar
with the analysis of dynamical systems, we discuss

in this section the behavior of the model without,
for the moment, making reference to bifurcations.
This means that we show the result of a huge num-
ber of simulations (almost one million for some
figures), while we relegate to the next section the
analysis and discussion of the complex structure of
these figures.

We have already seen that, as long as eiai > di

for both parties, the system temporarily evolves,
during each term, toward xD or xR. Therefore, as
long as the values of aD and aR are sufficiently large,
the asymptotic behavior must be periodic, quasi-
periodic or chaotic. In order to detect all modes
of behavior of the model we have simulated the
system for different values of the term length (T )
and of the attack rate (aD) of party D, keeping all
other parameters fixed at the values indicated in
the caption of Fig. 1. In Fig. 1 the colors indicate
the number of terms in a cycle, where blue stands
for few terms and red for many terms. Notice that
we have stopped counting after 256 elections: thus
the dark red regions in the upper part of the figure
could correspond to orbits of much higher period
or to aperiodic behaviors. In particular, in points
�1 , �2 , �3 and �4 the cycles have 2, 3, 5 and 6

terms respectively, while in point �5 the attrac-
tor is chaotic. In point �6 and in the surround-
ing region, which is characterized by eDaD < dD,
party D remains at the government indefinitely. We
see that in the central part of the figure, where
the two lobbies have similar characteristics, the
attractor of type �1 is most frequently encountered.
In other words, when the two lobbies are similar,
the government changes at every election and the
welfare varies periodically. By contrast, in the red
regions the attractors are more complex, so that
one could expect the outcome of the elections and
the course of the welfare to be more unpredictable.
Actually, this is only partly true, because there are
chaotic attractors characterized by strictly periodic
sequences of the parties at the government. This
becomes clear by looking at Fig. 2. Here the col-
ors do not correspond to the number of terms in
a cycle, but to the number of terms in a peri-
odic sequence of the parties at the government.
For example, a four-term cycle where the parties
alternate at each election (DRDR) has a periodic
sequence of parties at the government (DR) involv-
ing only two terms. The central blue region is much
larger than in Fig. 1, meaning that many of the
complex attractors that we observe in Fig. 1 are
actually very simple if we look only at the outcomes
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Fig. 1. The colors, from blue to red, correspond to the increasing number of terms in a cycle. The value of the parameters
are: aR = 1, r = 0.2, eD = eR = 6, dD = dR = 1.8, kD = kR = 0.06.

of the elections. On the other hand, if the differ-
ences between the two lobbies are more relevant,
then also the outcomes of the elections can become
more complex.

We can obtain some more information by
observing how the mean value W T of the welfare
changes with respect to T and aD. We already

know from the previous section that W 0 > W ∞,
but Fig. 3 shows that the average welfare W T

actually decreases with respect to T , thus sug-
gesting that shorter terms are more effective.
Another (more intuitive) outcome of Fig. 3 is that
the mean welfare decreases with respect to the
aggressiveness.

Fig. 2. The colors, from blue to red, correspond to the increasing number of terms in a periodic sequence of parties at the
government. In some of the main regions in the figure these sequences are explicitly pointed out.
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Fig. 3. The average value W T of the welfare for different values of the aggressiveness aD and of the term length T . Notice
that the welfare decreases with respect to T and aD.

As the reader has certainly noticed, Figs. 1 and
2 display an obvious structure, that is studied in
the next section in terms of bifurcations.

4. Bifurcation Analysis

Model (1) is a discontinuous system with periodic
and chaotic attractors. Varying its parameters one
can, therefore, expect to find flip and tangent bifur-
cations of limit cycles, as well as other nonstan-
dard bifurcations that are peculiar to discontinuous
systems. In particular, a nonstandard bifurcation
occurs every time a vertex of a cycle (i.e. a point
of a cycle corresponding to an election) touches
the discontinuity boundary. This bifurcation is sim-
ilar to the border collision bifurcation (also known
as c-bifurcation) that can be found in piecewise-
smooth maps [Feigin, 1970, 1974, 1978; Nusse &
Yorke, 1992, 1995; Nusse et al., 1994]. This is not
surprising, as our system can be seen as a piecewise-
smooth map, where the next vertex is obtained from
the present vertex by integrating the appropriate
vector field (f (D) or f (R)) for a time T . Since this
map is discontinuous across the boundary, after the
border collision the cycle generically disappears and
the system settles on another attractor.

Given the complex structure of Fig. 1, a
detailed bifurcation diagram would be difficult to
read and of little help. For this reason, we focus
only on the few bifurcations that surround the
larger regions in Fig. 1. In particular, we report
in Fig. 4 the bifurcations of stable cycles, found

through continuation, that surround the regions
around point �1 and �2 in Fig. 1. The upper bound-
aries of these regions consist of flip (F) and tangent
(TC) bifurcations of limit cycles. The flips are con-
nected to border collisions (BC) at codimension-2
bifurcation points. A complete unfolding of this
codimension-2 points would show that one flip and
two border collisions of stable cycles branch out
from these points, since in a neighborhood of the
codimension-2 point both stable cycles involved in
the flip must undergo a border collision. However,
in order to keep the diagram simple, the border
collisions of the cycle of longer period have not
been drawn in Fig. 4. Moving further down in the

Fig. 4. The main bifurcation curves of model (1), obtained
through continuation.
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(a)

(b)

Fig. 5. The main bifurcation curves superposed to Figs. 1 and 2.

diagram, couples of border collisions form Arnold
tongues, rooted at codimension-2 points on the
T = 0 axis, forming a structure similar to the
one observed in particular piecewise-smooth maps
[Feely, 1991; Jain & Banerjee, 2003; Avrutin et al.,
2006; Hogan et al., 2007]. Looking at Fig. 1, we see
that the same structure is repeated a large num-
ber of times, i.e. the T = 0 axis is dense with

such codimension-2 points. This fact can be eas-
ily explained considering the behavior of the sys-
tem extremely close to the horizontal axis. As we
have seen, when T = 0 the model becomes a Fil-
ippov system, whose only attractor is a pseudo-
equilibrium of the sliding vector field (2). If T is
small, we can then expect a small cycle to exist
instead of the pseudoequilibrium. Increasing the
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aggressiveness aD, this small cycle hits the discon-
tinuity boundary with one of its vertices, and the
same occurs (with another vertex) if the aggressive-
ness is decreased. This explains the presence of the
two border collision curves delimiting the Arnold
tongue. A more careful analysis can take us even
further, and allow the prediction of the exact posi-
tion of the Arnold tongues and the structure of the
corresponding cycles. In fact, the ratio of the num-
ber of D-terms to the total number of terms in
the cycle must approach λ in (2) as T → 0, so
that if λ is rational, say p/q, the cycle must be
composed of p D-terms and q − p R-terms. The
sequence of D-terms and R-terms is then uniquely
determined following the election rules. This means
that an Arnold tongue is rooted on the T = 0 axis
at each point where λ (evaluated at the pseudo-
equilibrium) is rational. The general formula for λ
in terms of the other parameters is quite compli-
cated, but assuming, as we did in our simulations,
that aR = 1, eR = eD, kR = kD, dR = dD, we
obtain that the dependence of λ on aD assumes the
beautifully simple form

λ =
1

1 + aD
.

It is now easy to see that, in Fig. 2, the tongue
rooted at aD = 1 must contain a cycle of two terms
(DR), the one rooted at aD = 0.5 a cycle of three
terms (DDR), and the one rooted at aD = 2/3 a
cycle of five terms (DDRDR).

This concludes our short analysis of the bifur-
cations that support the structure of Figs. 1 and 2.
For more clarity, we summarize our results in Fig. 5,
where the bifurcation lines analyzed in this section
are superposed to Figs. 1 and 2.

5. Conclusions

In this paper, we present a model of a two-party
democracy, based on some simplistic but reason-
able assumptions. We use a discontinuous system,
with three state variables and two sets of differen-
tial equations, each one describing the effect of one
party at the government. The dynamics we observe
through simulations show a complex interplay of
different periodic and chaotic attractors, organized
by a set of flip, tangent of cycles and border colli-
sion bifurcations. A more accurate analysis of these
bifurcations, done through continuation, allows to
explain most of the observed structures.

The work we have done represents a first step
in the application of dynamical systems in this field,

so that further extensions are not only possible but
advisable. In particular, obvious extensions would
include considering different criteria for the choice
of the party at the time of elections, more accu-
rate models for the dynamics of the welfare, and
entrainment effects that could justify the frequent
re-election of the same party for two consecutive
terms, as in the US.

As far as our study is concerned, we can state
two main results. First, the model supports the idea
that, independently of the complex influences of
external factors, long-term predictions of the elec-
toral outcomes in the real world can be very dif-
ficult, if not impossible, due to the intrinsically
chaotic dynamics of the political system. Second,
a two-party system is better than a multi-party
system because, ensuring a more frequent change
of the party at the government, it can achieve a
higher level of welfare. Once again though, we must
stress that this model is extremely simple and has
no ambition of giving a complete or even faithful
description of the phenomena it models.
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